On a Generalized Kaplansky Conjecture

نویسنده

  • R. A. Mollin
چکیده

A conjecture was related to this author in correspondence, some years ago, with Irving Kaplansky, which according to Professor Kaplansky, was inspired by the proof of [4, Theorem 6.5.9, p. 348]. It asserts that if p is a prime with representation p = a2 + (2b)2, then the equation x2 − py2 = a is solvable in integers x, y. In [5], we proved this conjecture along with several others by him. Subsequently, Walsh in [6], gave a slight extension of the above proof: if n ≡ 1 (mod 4) is a nonsquare integer with representation n = a2 + (2b)2 for integers a and b, and if X2 − nY 2 = −1 has solutions in integers X,Y , then n has a factorization n = rs such that the equation ru2 − sv2 = a is solvable in integers u, v. It is the purpose of this work to generalize the latter to a much wider range of cases as given in Theorem 1.1 below. We illustrate with several examples to show the wide applicability of the result. Mathematics Subject Classification: 11A51, 11D09, 11R11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instances of the Kaplansky-lvov Multilinear Conjecture for Polynomials of Degree Three

Given a positive integer d, the Kaplansky-Lvov conjecture states that the set of values of a multilinear noncommutative polynomial f ∈ C〈x1, . . . , xn〉 on the matrix algebra Md(C) is a vector subspace. In this article the technique of using one-wiggle families of Sylvester’s clock-and-shift matrices is championed to establish the conjecture for polynomials f of degree three when d is even or d...

متن کامل

On the Farrell-Jones Conjecture and its applications

We present the status of the Farrell-Jones Conjecture for algebraic K-theory for a group G and arbitrary coefficient rings R. We add new groups for which the conjecture is known to be true and study inheritance properties. We discuss new applications, focussing on the Bass Conjecture, the Kaplansky Conjecture and conjectures generalizing Moody’s Induction Theorem. Thus we extend the class of gr...

متن کامل

Quadratic forms that represent almost the same primes

Jagy and Kaplansky exhibited a table of 68 pairs of positive definite binary quadratic forms that represent the same odd primes and conjectured that their list is complete outside of “trivial” pairs. In this article, we confirm their conjecture, and in fact find all pairs of such forms that represent the same primes outside of a finite set.

متن کامل

The Baum-connes Conjecture for Hyperbolic Groups

The Baum-Connes conjecture states that, for a discrete group G, the K-homology groups of the classifying space for proper G-action is isomorphic to the K-groups of the reduced group C-algebra of G [3, 2]. A positive answer to the Baum-Connes conjecture would provide a complete solution to the problem of computing higher indices of elliptic operators on compact manifolds. The rational injectivit...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006